EE 435

Lecture 34

Switches Current Steering DACs **Review from Last Lecture**

Basic R-String DAC

For all b_1 and b_2 , $R_U+R_L=R$

- Another Segmented DAC structure
- Can be viewed as a "dither" DAC
- Often n₁ is much smaller than n₂
- Dither can be used in other applications as well

Switches used extensively in data converters ! Switch Implementation Issues

 V_{SIG} : Voltage on switch when ON

 V_{SIG} : Voltage on switch when ON

Transmission Gate Impedance Can be Reasonably constant

Even Transmission Gate Does Not Perform Well

Gap where neither switch is working

Current will be "steered" to a resistive load (on chip)

Output could be a current (user supplies load)

Basic Concept of Current Steering DACs

What is important is the current generated, not whether it comes from a "current source"

Many potential current generator blocks, just require that all be ideally identical

Inherently Insensitive to Nonlinearities in Switches and Resistors

- Termed "top plate switching"
- Thermometer coding
- Excellent DNL properties
- INL may be poor, typically near mid range
- INL is a random variable with variance approximately proportional to area
- Area gets large for good yield with large n
- Each additional bit of resolution requires a factor of 2 increase in area if same sized resistors are used
- Each additional bit of resolution requires another factor of 4 increase in area to maintain the same yield

 $\sigma = \frac{A_{PEL}}{\sqrt{A}}$

Inherently Insensitive to Nonlinearities in Switches and Resistors Smaller ON resistance and less phase-shift from clock edges

- Termed "bottom plate switching"
- Thermometer coded

Transistor Implementation of Switches

Current Steering DACs n V_{REF} **Binary to Thermometer Decoder** (all ON) R R R $N=2^n$. . . S_2 S_{N-1} S₁ R_{F} $||_2$ $|I_1|$ ↓I_{N-1} V_{OUT} 1 2

Transistor Implementation of Switches

How should the op amp be compensated?

Assume k switches are on 0<k<N-1

$$\beta = \frac{\frac{R_{CELL}}{k}}{\frac{R_{CELL}}{k} + R_{F}} = \frac{R_{CELL}}{R_{CELL} + kR_{F}}$$
 If $V_{OUTFS} = V_{REF}$ $R_{CELL} = NR_{F}$
 $0.5 < \beta \le 1$

How should the op amp be compensated?

	Problem?
Switch impedance	No
Code-dependent phase margin	Yes
Single-ended output	Yes
C _P	Yes
Thermometer to Binary Decoder	Yes
Op Amp Bandwidth	Yes
Code-dependent switching time	No

Stay Safe and Stay Healthy !

End of Lecture 34

- DNL may be a major problem
- INL performance about same as thermometer coded if same unit resistors used
- Sizing and layout of switches is critical
- Unary resistor arrays usually used with common-centroid layout(at least for MSB)
- Ratio matching strongly dependent upon area (if common-centroid used to eliminate gradients)
- INL is a random variable with variance approximately proportional to
- Area gets large for good yield with large n

Observe thermometer coding and binary weighted both offer some major advantages and some major limitations

INL may be poor, typically near mid range

approximately $\sigma = \frac{A_{PEL}}{\sqrt{A}}$

Consider a k-bit structure that has an acceptable (and desired) yield of Y

Can a k+1 bit structure be easily implemented by simply making 2 copies of the resistor array and adding one bit to the decoder?

The one-afternoon design ?

Binary-Weighted Resistor Arrays

Actual layout of resistors is very important

As stated earlier, bundled unary cells are almost always used

Segmented Resistor Arrays

- Combines two types of architectures
- Inherits advantages of both thermometer and binary approach
- Minimizes limitations of both thermometer and binary approach

R-2R Resistor Arrays

- 4 bit-slices shown
- Can be extended to arbitrary number of bit slices
- Conceptually, area goes up linearly with number of bit slices

R-2R Resistor Arrays

Node voltages ideally stay constant for any input code

Highly sensitive to nonlinearities in switches

How should switches be sized?

R-2R Resistor Arrays

R-2R Implementation

- Unit cell widely used
- Switch included in cell even if not switched!
- Code dependence of switch impedance of concern

How can switch impedances be matched?

Another R-2R DAC

Node voltages change with input code

Requires matching both current sources and resistors

But switch impedance does not affect performance

 $\boldsymbol{\beta}$ is independent of Boolean code

Node voltages in R/2R block must change for any input transitions

Voltages on internal R-2R nodes must settle with input transitions

Another R-2R DAC

Clocks must be nonoverlapping

Does this offer any benefits over previous approach?

Offers some compensation for capacitances on current sources Are there other terminations for the current sources?

Stay Safe and Stay Healthy !

End of Lecture 34