EE 435

Lecture 34

Switches

Current Steering DACs

Basic R-String DAC

For all b_{1} and $b_{2}, R_{U}+R_{L}=R$

- Another Segmented DAC structure
- Can be viewed as a "dither" DAC
- Often n_{1} is much smaller than n_{2}
- Dither can be used in other applications as well

Switches used extensively in data converters ! Switch Implementation Issues

Switch Implementation Issues

$\mathrm{V}_{\text {SIG }}$: Voltage on switch when ON

Switch Implementation Issues

$\mathrm{V}_{\mathrm{SIG}}$: Voltage on switch when ON

Switch Implementation Issues

Transmission Gate Impedance Can be Reasonably constant

Switch Implementation Issues

Equal-Sized Switches

Switch Implementation Issues

Equal-Sized Switches
High Threshold Voltages
Equal-Sized Switches
High Threshold Voltages

Even Transmission Gate Does Not Perform Well

Switch Implementation Issues

$$
\begin{aligned}
& \mathrm{V}_{\text {THn }}=2.0 \\
& \mathrm{~V}_{\text {THp }}=-2.0 \\
& \mathrm{~W}_{\mathrm{p}}=3 \mathrm{~W}_{\mathrm{n}} \\
& \mathrm{~L}_{\mathrm{p}}=L_{n} \\
& \mathrm{~V}_{\mathrm{DD}}=3.5 \mathrm{~V}
\end{aligned}
$$

Tough unlikely, this is what would happen if very high threshold devices were used

Gap where neither switch is working

Current Steering DACs

Current will be "steered" to a resistive load (on chip)
Output could be a current (user supplies load)
Basic Concept of Current Steering DACs

Current Steering DACs

What is important is the current generated, not whether it comes from a "current source"

Many potential current generator blocks, just require that all be ideally identical

Current Steering DACs

Inherently Insensitive to Nonlinearities in Switches and Resistors

- Termed "top plate switching"
- Thermometer coding
- Excellent DNL properties
- INL may be poor, typically near mid range
- INL is a random variable with variance approximately proportional to area $\sigma=\frac{A_{\text {PEL }}}{\sqrt{\mathrm{A}}}$
- Each additional bit of resolution requires a factor of 2 increase in area if same sized resistors are used
- Each additional bit of resolution requires another factor of 4 increase in area to maintain the same yield

Current Steering DACs

Inherently Insensitive to Nonlinearities in Switches and Resistors Smaller ON resistance and less phase-shift from clock edges

- Termed "bottom plate switching"
- Thermometer coded

Current Steering DACs

Transistor Implementation of Switches

Current Steering DACs

How should the op amp be compensated?
Assume k switches are on $0<\mathrm{k}<\mathrm{N}-1$

$$
\begin{array}{lrr}
\beta=\frac{\frac{R_{C E L L}}{k}}{\frac{R_{C E L L}}{k}+R_{F}}=\frac{R_{\text {CELL }}}{R_{\text {CELL }}+k R_{F}} & \text { If } \quad V_{\text {OUTFS }}=V_{\text {REF }} \quad R_{\text {CELL }}=N_{F} \\
0.5<\beta \leq 1
\end{array}
$$

How should the op amp be compensated?

$$
\beta=\frac{\frac{R_{C E L L}}{k}}{\frac{R_{C E L L}}{k}+R_{F}}=\frac{R_{C E L L}}{R_{C E L L}+k R_{F}}
$$

$V_{\text {OUTFS }}=V_{\text {REF }} \quad 0.5<\beta \leq 1$

Current Steering DACs

Problem?

Switch impedance
Code-dependent phase margin
Single-ended output
C_{P}
Thermometer to Binary Decoder Yes
Op Amp Bandwidth
Code-dependent switching time

No
Yes
Yes
Yes

Yes
No

Current Steering DACs

C_{P} Compensation
Differential Output

Stay Safe and Stay Healthy !

End of Lecture 34

Current Steering DACs

Binary-Weighted Resistor Arrays

- DNL may be a major problem
- INL performance about same as thermometer coded if same unit resistors used
- Sizing and layout of switches is critical
- Unary resistor arrays usually used with common-centroid layout(at least for MSB)
- Ratio matching strongly dependent upon area (if common-centroid used to eliminate gradients)
- INL is a random variable with variance approximately proportional to
- Area gets large for good yield with large n

$$
\sigma=\frac{\mathrm{A}_{\text {PED }}}{\sqrt{\mathrm{A}}}
$$

Observe thermometer coding and binary weighted both offer some major advantages and some major limitations

Current Steering DACs

INL may be poor, typically near mid range approximately $\sigma=\frac{A_{\text {PEL }}}{\sqrt{A}}$ Consider a k-bit structure that has an acceptable (and desired) yield of Y

Can a $k+1$ bit structure be easily implemented by simply making 2 copies of the resistor array and adding one bit to the decoder?

The one-afternoon design?

Current Steering DACs

Binary-Weighted Resistor Arrays

Actual layout of resistors is very important

As stated earlier, bundled unary cells are almost always used

Current Steering DACs

Segmented Resistor Arrays

- Combines two types of architectures
- Inherits advantages of both thermometer and binary approach
- Minimizes limitations of both thermometer and binary approach

R-2R Resistor Arrays

- 4 bit-slices shown
- Can be extended to arbitrary number of bit slices
- Conceptually, area goes up linearly with number of bit slices

Current Steering DACs

R-2R Resistor Arrays
Node voltages ideally stay constant for any input code
Highly sensitive to nonlinearities in switches
How should switches be sized?

Current Steering DACs

R-2R Resistor Arrays

R-2R Implementation

- Unit cell widely used
- Switch included in cell even if not switched!
- Code dependence of switch impedance of concern

How can switch impedances be matched?

Another R-2R DAC

Node voltages change with input code

Another R-2R DAC

Requires matching both current sources and resistors
But switch impedance does not affect performance
β is independent of Boolean code
Node voltages in R/2R block must change for any input transitions
Voltages on internal R-2R nodes must settle with input transitions

Another R-2R DAC

Clocks must be nonoverlapping
Does this offer any benefits over previous approach ?
Offers some compensation for capacitances on current sources
Are there other terminations for the current sources?

Stay Safe and Stay Healthy !

End of Lecture 34

